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Abstract

On the one hand, linear functions arise in various fields of mathematics and beyond, e.g.,
linear algebra, functional analysis, representation theory, logic and quantum physics. Also,
linear logic defines linear proofs and shows that linearity does not restrict but refines logical
constructions by decomposing them into more primitive ones. On the other hand, predicates,
or more generally dependent types, are indispensable part of foundations of mathematics
since without them one cannot even talk about properties of individual objects. It is then a
natural aim to blend linearity and dependency in terms of the general framework of category
theory because, in addition to clarifying how these two fundamental concepts interact, the
combination will analyse and polish dependency through the lens of linearity and provide a
mathematical universe to reason about linear functions and proofs. However, this blending
is notoriously difficult, and a solution to this problem has not been established for a long
time. The present work addresses this well-known problem via modules (for linearity) in the
setting of indexed categories (for dependent types). Specifically, we introduce indexed module
categories with monoidal comprehension as a categorical blend of linearity and dependency,
and for their reasonability prove that they are sound and complete for a linear refinement of
Martin-Löf type theory, a prominent foundation of mathematics. We also show that vector
spaces form an example of this blending. This result reveals a module structure underlying
dependent types and shows that linearity in algebra coincides with that in logic.
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1 Introduction
1.1 Linearity and dependency
On the one hand, linear functions play key roles in many branches of mathematics and beyond,
e.g., linear algebra, functional analysis, representation theory, logic and quantum physics. Their
standard formalism is vector spaces, or more generally, modules. Also, Girard’s linear logic [Gir87]
introduces linear proofs and refines existing logics by decomposing their logical constructions into
more primitive ones. Mathematically, the refinement (or translation) of intuitionistic logic into
intuitionistic linear logic is characterised by an adjunction [BBDPH93].

On the other hand, predicates constitute indispensable part of foundations of mathematics by
expressing properties of individual objects. In the framework of type theories [Chu40, SU06], a
class of formal systems as well as functional programming languages, one may consider a natural
generalisation of predicates known as dependent types [Hof97]. In terms of the standard, model-
theoretic interpretation, a predicate is a relation or a boolean-valued function, while a dependent
type is a set-indexed family of sets or an arbitrary function.

Why does one care such a generalisation? First, it is a mathematically natural one because
it corresponds to the generalisation of boolean-valued maps to general maps. Second, recall that
type theories serve as computational foundations of mathematics [ML75, ML84b, CH88] with
applications to programming [CAB+86, Sch09] via the proofs-as-programs paradigm [ML84a].
By admitting nontrivial proofs beyond boolean values, dependent types play central roles in this
computational paradigm. Lastly, this type-theoretic foundation has been extended significantly
by Voevodsky et al. under the name of homotopy type theory and univalent foundations [Uni13].
This extension has created a very active field of research, forming a beautiful interface between
type theory, homotopy theory and higher category theory. This new connection is based on
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the higher-dimensional structure underlying dependent types [HS98, vdBG11, Lum09, War11,
AW09, KL21], but this structure becomes trivial if one focuses on predicates.

1.2 Our goal: a categorical blend of linearity and dependency
There are compelling reasons for aiming to combine linearity and dependency. First of all, it is
an intriguing mathematical problem in its own right to blend these two fundamental concepts.
As explained below, this problem poses a technical challenge. Second, the blend will advance an
analysis on dependent types through the lens of linearity by decomposing operations on depen-
dent types into more primitive ones as in linear logic (n.b., linear logic has refined propositional
logics and simple type theories, while our aim is to refine more general predicate logics and
depenent type theories). Also, such an analysis can be a step towards an extension of the type-
theoretic foundations of mathematics constructively to classical reasoning as linear logic uncovers
a constructive interpretation of classical propositional logic [Gir87]. Such an extension will be an
innovation as it is still poorly understood how to combine dependent types constructively with
classical logic, e.g., see [Her05]; this problem is one of the main bottlenecks in restoring classical
mathematics constructively. Last but not least, a blend of linearity and dependency will lead to
a powerful foundation of mathematics that can reason about linear functions and proofs.

While logic and type theory motivate this work to a large extent, linearity and dependency are
both quite general concepts not specific to logic, type theory or even set theory. Our standpoint
is that category theory [ML13] is general enough to formulate these ubiquitous concepts. Hence,
we aim to blend linearity and dependency in terms of category theory, and show its reasonability
concretely in relation to a type-theoretic blend of linear logic and dependent types. We shall
also prove that well-known ‘linear spaces’ in mathematics such as vector spaces, Banach spaces
and Hilbert spaces constitute instances of our categorical framework.

1.3 Past attempts and obstacles
However, it is notoriously difficult to combine linear logic and dependent types, both categorically
and type-theoretically, and it has been a long-standing problem in the fields. Indeed, this problem
has been unsolved for nearly thirty years since the initial attempt [CP96] though some progresses
have been made by various researchers [KPB15, GL12, SHU13, PS12, Vák15, McB16, Atk18].

Why is the combination hard to accomplish? We shall answer this question in terms of both
type theory and category theory. Let us first explain it in terms of type theory. Recall that
the components of a type theory are a context Γ, a (dependent) type A over a context Γ, written
Γ ` A type, and a term a from a context Γ to a type A over Γ, written Γ ` a : A. From the logical
point of view, a context Γ represents an assumption, a type A over Γ a (generalised) predicate
over Γ, and a term a from Γ to A a proof of A under Γ. The model- or set-theoretic semantics J K
interprets a context Γ by a set JΓK, a type Γ ` A type by a set-indexed family JAK = {JAKγ}γ∈JΓK
of sets JAKγ , and a term Γ ` a : A by a map JaK : JΓK→

⋃
γ∈JΓKJAKγ such that JaK(γ) ∈ JAKγ for

all γ ∈ JΓK. A type is said to be simple if it does not contain a variable. Simple types generalise
constant predicates or propositions, and the set-theoretic semantics interprets them as singleton
families of sets. Every type S over the empty context ( ) is simple since ( ) does not contain any
variable; we abbreviate ( ) ` S type as S. For instance, the set-theoretic semantics interprets a
simple type N of natural numbers and a type N ` ListN type of finite lists of natural numbers by
JNK := N and JListNK := {Nk}k∈N, where Xk denotes the k-ary cartesian product of a set X.

Now, recall that linearity of a proof in the sense of linear logic is reflected in a type theory
by the property of a term that it contains precisely one copy of each variable in the context.
For instance, the term x : N, y : N ` x + y : N is linear, but the one x : N ` x + x : N is not. Then,
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a main problem in blending linearity in this sense and dependent types is that a variable may
occur not only in a term but also in a dependent type. Note that this problem is irrelevant to
simple types. For example, consider the following term (which is taken from [Atk18, §1]):

x : N, y : ListN(x) ` y : ListN(x). (1)

This term y is not linear because the variable x in the context does not occur in the term y, and
because x occurs twice in ListN(x). Nevertheless, the computation of this term y is essentially the
identity map, and the variable x in the context is not a computational input for y. Hence, one
should be able to ‘linearise’ this term y by removing x in the context, but it is impossible since
x plays an indispensable role in the term as a parameter for the dependent type ListN(x). In this
way, variables in dependent types make it hopeless to realise a linear term of a dependent type.

Next, to depict the same problem from a categorical angle, recall that a standard categorical
characterisation of dependent types is Jacobs’ comprehension categories [Jac93] or any other
equivalent categorical structures [Hof97, §3.2]. The set-theoretic semantics forms their instance.
A comprehension category interprets the context x : N, y : ListN(x) as the (generalised) cartesian
product of N and List, the term x : N, y : ListN(x) ` x : N as the first projection of the cartesian
product, and the above term (1) as the second projection. Moreover, a comprehension category
interprets dependent sum and product types, or generalised existential and universal quantifiers,
respectively, by adjoints to the indexing functors induced by the first projections. Therefore, the
base category of a comprehension category has finite (generalised) products. However, projections
discard inputs, and pairings contract them. Thus, the basic structure of a comprehension category
is already incompatible with linearity in logic. Besides, as non-cartesian categories include those
whose morphisms are a class of linear functions, e.g., the category of Hilbert spaces, the cartesian
structure makes it hopeless for comprehension categories to embrace linearity in algebras too.

In the following, we list some attempts to address this problem in the literature of mathematics
and computer science, and explain why they do not solve the problem completely.

1.3.1 Dual contexts

A major type-theoretic method adopted by Cervesato and Pfenning [CP96], Krishnaswami et al.
[KPB15] and Vákàr [Vák15] for circumventing the conflict between linearity and dependency is
to split a context into two regions, cartesian and linear ones, by a semicolon, and allow a type
to contain only variables in the cartesian region. This dual context method is originally invented
by Barber and Plotkin [BP96] on a simply-typed calculus for intuitionistic propositional linear
logic. For instance, this approach transforms the term (1) into the form

x : N; y : ListN(x) ` y : ListN(x), (2)

in which the left- (respectively, right-) hand side of the semicolon is the cartesian (respectively,
linear) region. One can then apply the concept of linearity of a term to this dual context method
by focusing on variables in the linear region. In this sense, the term (2) is linear.

In contrast, variables in the cartesian region are discardable and contractible because the
reasoning about terms by a dependent type must be cartesian. For instance, the dependent type
f, g : N ( N, x : N ` f(f(x)) < g(x) type, where ( represents linear maps, and < the standard
order between natural numbers, should be a basic vocabulary in a linear dependent type theory,
and it duplicates the variables f and x, respectively. I.e., dependent types must be cartesian for
a type theory to be expressive even if terms are required to be non-cartesian.

However, this approach does not realise a true interaction between linearity and dependency
since the two regions are completely separated; i.e., it is only a disjoint union of linear logic and
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a dependent type theory. For instance, this method cannot define a linear variant of dependent
sum or product types because a type cannot vary over variables in the linear region. For the same
reason, it cannot reason properly about dependent tensor or linear maps either. As a result, the
dual context system is hopeless with our aim to refine dependency by linearity or to extend the
type-theoretic foundations of mathematics by reasoning about linear maps and proofs.

Unsurprisingly, the categorical counterpart of the dual context linear dependent type theory
given by Vákár [Vák15] is essentially the disjoint union of the existing categorical semantics of
intuitionistic linear logic [BBDPH93] and dependent type theories [Jac93]. Needless to say, this
approach therefore does not depict how linearity interact with dependency in a genuine sense.

1.3.2 Quantitative type theories

Dual contexts were the best possible approaches to linear dependent type theories until McBride
[McB16] made a breakthrough by adapting the usage annotation by semirings [BGMZ14, POM14,
GS14] to a dependent type theory. The annotation is to assign an element n of a semiring to each
variable in a context, which means that the variable is to be consumed precisely n times. The use
of a semiring is suited here as type-theoretic constructions require addition and multiplication on
annotated elements. McBride’s innovative idea is then to regard variables used by a dependent
type as consumed 0-times. For instance, his method transforms the term (1) into the one

x0 : N, y1 : ListN(x0) ` y1 : ListN(x0), (3)

where the superscripts on variables are elements of a fixed semiring. The total number of con-
sumed variables matches that of produced variables: 0 = 0 + 0 for x, and 1 = 1 for y. Thus, the
modified term (3) is linear in the sense of linear logic (i.e., faithful to the resource requirement of
the context). In this way, McBride realised a linear dependent type theory in which a type may
depend on variables classified as those in the linear region in the dual context system (§1.3.1).

However, it has turned out that McBride’s linear dependent type theory has a fundamental
flaw due to its linear pi-types: not closed under substitution. This problem corresponds in cate-
gory theory to the ill-definedness of composition of morphisms. This problem is fixed by Atkey
[Atk18] by restricting the annotation on a term to 0 or 1. Unfortunately, this restriction prohibits
terms from possessing quantitative information. This restriction also makes it hopeless to regard
terms as linear maps because it bans addition or scalar multiplication on terms. Consequently,
the linearity of a term in the sense of Atkey diverges from the standard one in mathematics.

Finally, no categorical semantics of McBride’s or Atkey’s type theory has been established
(though Atkey built equational semantics [Atk18, §3]). Thus, the problem of combining linearity
and dependency in the general framework of category theory is still open.

1.4 Main results and our contributions
The present work establishes a true blend of linearity and dependency in terms of type theory
and category theory as follows. We first define the syntax of a linear variant of Martin-Löf type
theory (MLTT) [ML82, ML84b, ML98] or one of the best-known dependent type theories, called
linear MLTT (LMLTT). LMLTT is equipped with the dependent-type generalisations of logical
constructions in intuitionistic linear logic and identity types. We then prove some basic properties
of LMLTT; in particular, we show that LMLTT is closed under substitution, overcoming the
deficiency of McBride, and further that it gives rise to the categorical structure sketched below.
LMLTT is also free from Atkey’s undesirable restriction on the annotation of terms. One of the
key ideas that enables this innovation is to apply the structure of modules (in the sense of linear
algebra). Moreover, by a generalisation of Girard’s translation from intuitionistic linear logic to
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intuitionistic logic [Gir87], LMLTT recovers MLTT; i.e., LMLTT is a linear refinement of MLTT,
where constructions in the former refines those in the latter.

Next, we introduce a categorical reformulation of modules over a semiring, generalise them
to indexed ones and equip them with a linear refinement of comprehension [Jac93]. We fur-
ther define categorical constructions in this framework that correspond to type constructions
in LMLTT. The resulting structure is called indexed module categories with monoidal compre-
hension, or module comprehension categories for short. As a main result, we show that module
comprehension categories yield sound and complete semantics of LMLTT; i.e., they achieve a cat-
egorical blend of linearity and dependency that matches the type-theoretic one. The soundness
and the completeness also imply that our formulation of linearity in the sense of linear algebra
(or modules) coincides with that in linear logic (or type theory).

In addition, we lift the linear/non-linear adjunction [BBDPH93], the categorical counterpart
of Girard’s translation, to an adjunction between module comprehension categories and compre-
hension categories. This adjunction corresponds to the translation of MLTT into LMLTT, and
it also verifies that our framework refines the categorical semantics of dependent type theories.

To the best of our knowledge, the present work establishes the first complete solution to the
long-standing problem of combining linear logic and dependent types in terms of type theory
and category theory. One of the main innovations behind this result is that, whilst categorical
semantics of MLTT relies on (generalised) cartesian projections in a crucial way, our categorical
approach dispenses with them entirely. Accordingly, the standard categorical semantics of de-
pendent product and sum types by adjoints to the indexing functors of projections is no longer
valid. Our approach instead interprets linear dependent product and sum types in LMLTT by
certain natural transformations, where their naturality, instead of the Beck-Chevalley condition,
corresponds to the compatibility of the type constructions with substitution. The aforementioned
adjoints with the Beck-Chevalley condition have been standard and fundamental in categorical
logic for a long time [Jac99], tracing back to Lawvere [Law69, Law70], and hence we believe that
our new method in terms of natural transformations will have nontrivial impacts in the field.

1.5 Related work
We have already mentioned the previous approaches to linear dependency based on dual contexts
and those based semirings. In the sequel, we list some of the other related work.

Fu et al. [FKS20, FKS22] proposed a linear dependent type theory suitable for quantum
circuit programming languages and provided their type theory with operational and denotational
semantics. The denotational semantics is given by a class of fibred autonomous (i.e., symmetric
monoidal closed) categories over locally cartesian closed categories, where recall that autonomous
categories form semantics of the multiplicative fragment of intuitionistic linear logic, and locally
cartesian closed categories that of MLTT. Similarly to McBride [McB16], they decorate contexts
in the quantum programming language with elements of a semiring, but their types are dependent
over the shape of the base type (not the base type with the additive unit 0 of the semiring
attached). Due to this new feature, it is not straightforward to compare their method with the
present work, and we leave it as future work. Nevertheless, there are some apparent differences
between the two approaches. For instance, the base of their fibred categorical semantics is locally
cartesian closed categories, and their interpretations of linear dependent product and sum types
are given in terms of the standard semantics of dependent product and sum types in locally
cartesian closed categories. For our aim to refine dependency through linearity, this method is
undesirable because it does not decompose dependent product or sum types into more primitive
ones. In contrast, our approach defines categorical semantics of linear dependent product and
sum types without referring to the semantics of dependent product or sum types, and rather the
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former recovers the latter by a generalisation of linear/non-linear adjunction.
Riley in his PhD thesis [Ril22] extended MLTT with linear dependent types with the aim of

formalising stable homotopy theory. Instead of elements of a semiring, his approach augments a
context with two structures, called a palette and colours from the palette. Because of these new
structures, it is not straightforward to compare his approach with the present work, and we leave
it as future work. To date, no semantics of his linear dependent type theory has been given.

Finally, indexed monoidal categories have been discovered many times in the literature by
various researchers, among which [GG76] is the first one. Because module categories are monoidal
categories together with additional structures, indexed module categories are closely related to
indexed monoidal categories. For interpreting linear dependent types, however, one usually
requires the base category of an indexed monoidal category to be cartesian [SHU08] so that
monoidal fibrations are defined, while the base category of an indexed module categories is
monoidal (possibly non-cartesian). Despite this seeming difference between indexed monoidal
and module categories, we shall relate the two by inducing indexed monoidal categories with
cartesian base categories from indexed module categories through the functor ( )0 that decorates
the base categories with the additive unit 0 of a semiring.

2 Linear Martin-Löf type theory
This section introduces a linear variant of Martin-Löf type theory (MLTT), called linear MLTT
(LMTLL). We assume that the reader is familiar with the basics of MLTT; see the original
articles [ML82, ML84b, ML98] by Martin-Löf or the tutorial [Hof97] by Hofmann for the details.

This section proceeds as follows. We first fix the general format or judgements of LMLTT in
§2.1, and, following this formats, present the rules on judgements for contexts in §2.2, structural
rules in §2.3, and context morphisms in §2.4. These rules constitute the core of LMLTT in the
sense that they are applicable regardless of postulated types. We next postulate specific type
constructions in LMLTT in §2.5, and formulate commuting conversions in 2.6. We finally prove
some basic properties of LMLTT, e.g., LMLTT recovers MLTT, in §2.7.

For our aim, it is convenient to employ the following categorical formulation of semirings:

Definition 2.1 (semirings). A semiring is a strict symmetric monoidal category R = (R,+, 0)
with precisely one object ?R (abbreviated as ?) that satisfies the equations

(p+ q)× r = (p× r) + (q × r) p× (q + r) = (p× q) + (p× r) p× 0 = 0 = 0× p,

where × denotes the composition of morphisms, for all morphisms p, q and r in R, and it is said
to be commutative if it additionally satisfies the equation

p× q = q × p

for all morphisms p and q in R. A (totally) ordered semiring is a semiring R enriched over
the category of (totally) ordered sets and monotone functions.

Remark. In general, strict monoidal categories are rare; weak ones abound more. Our semirings
are, however, not a counterexample of this phenomenon because each of them has just one object,
in which the difference between an equality and an isomorphism between objects vanishes.
Notation. Given a semiring R = (R,+, 0), we write R+,0 for the strict symmetric monoidal
category (R,+, 0) or additive structure, and R×,1 for the strict monoidal category (R,×, 1) or
multiplicative structure, where 1 := id?. Abusing notation, we write r ∈ R if r is a morphism
in R, and pq for p× q. If R is ordered, then 6R or 6 denotes the order on the hom-set R(?, ?).
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Example 2.2. If one takes an arbitrary element ? as the unique object, and natural numbers as
morphisms, then the set N of all natural numbers forms an ordered semiring under the standard
ordering on N, where addition + and zero 0 constitute the additive structure, and multiplication
× and one 1 the multiplicative structure.

In the remainder of the present section, we fix an arbitrary ordered commutative semiring R.

2.1 Judgements
To explain our ideas, let us first recall that MLTT is a formal system similar to natural deduction
[Gen35, TS00] except that vertices of a derivation (tree) are judgements, not formulae. Specif-
ically, MLTT consists of the following six judgements (followed by their intended meanings):

1. ` Γ ctx (Γ is a context);

2. Γ ` A type (A is a type in the context Γ);

3. Γ ` a : A (a is a term or proof of the type A in the context Γ);

4. ` Γ = ∆ ctx (Γ and ∆ are (judgmentally) equal contexts);

5. Γ ` A = A′ type (A and A′ are (judgmentally) equal types in the context Γ);

6. Γ ` a = a′ : A (a and a′ are (judgmentally) equal terms of the type A in the context Γ),
where judgemental equality is distinguished from propositional equality recalled later. A type
and a term are primitive concepts, while a context is a derived one: A context is a finite sequence
x1 : A1, . . . , xn : An of pairs of a variable xi and a type Ai, written xi : Ai (1 6 i 6 n), such that
the variables are pairwise distinct.

Similarly, LMLTT consists of these six judgements except that its contexts, types and terms
are decorated with elements of R for reasoning about resources:

1. ` Γ ctx (Γ = xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n is a context);

2. Γ0 ` Ap type (Ap is a type in the context Γ0);

3. Γ ` as : Ap (as is a term of the type Ap in the context Γ);

4. ` Γ = ∆ ctx (Γ and ∆ are equal contexts);

5. Γ0 ` Ap = Bq type (Ap and Bq are equal types in the context Γ0);

6. Γ ` as11 = as22 : Ap (as11 and as22 are equal terms of the type Ap in the context Γ),
where p, p1, . . . , pn, s, s1, s2, q ∈ R, and Γq := xp1q

1 : Ap1q
1 , . . . , xpnq

n : Apnq
n . Intuitively, an element

p ∈ R attached to a context, a type or a term signifies the number of times the syntactic object
is used. The context Γ0 of each type Ap is decorated by 0 as in [McB16, Atk18] since variables
in Γ are only parameters for Ap, not resources, i.e., Ap does not consume any variables in Γ. As
we shall verify shortly, if Γ ` as : Ap, then there is some Γ̃q ` ãq : Ãq such that Γ̃q = Γ, Ãq = Ap
and Γ̃q ` as = ãq : Ãq. We write Γ0 ` A type for Γ0 ` A1 type, and Γ ` a : Ap for Γ ` a1 : Ap.
Remark. Strictly speaking, judgements in LMLTT are identified up to the renaming of bound
variables to avoid a variable capture [B+84] as in the case of MLTT [Hof97, §2]. Accordingly, we
implicitly rename bound variables suitably and identify judgements modulo the renaming.

Unlike Atkey [Atk18] p ∈ R in a term Γ ` as : Ap ranges over any element of R, not only 0
or 1. Also, we shall show that unlike McBride [McB16] LMLTT is closed under substitution.

We have not introduced any axioms or rules; we have just taken an overview of the general
formats of LMLTT. In the rest of this section, we present the rules that constitute LMLTT.
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2.2 Contexts
A context in LMLTT is a finite sequence xp1

1 : Ap1
1 , . . . , xpn

n : Apn
n of pairs of a variable xi (i ∈ n)

decorated with an element pi of R and a type Api

i , written xpi

i : Api

i , such that the variables are
pairwise distinct. We write ( ) for the empty context, i.e., the empty sequence, and we usually
omit it if it occurs on the left-hand side of the turnstile ` in a judgement. In this case, we even
omit the turnstile ` in a judgement as well.

Formally, Figure 1 displays the axioms and the rules on contexts in LMLTT. They are almost

(Ctx-Emp)
` ( ) ctx

Γ0 ` Ap type(Ctx-Ext) (x does not occur in Γ)
` Γ, xp : Ap ctx

` Γ = ∆ ctx Γ0 ` Ap = Bq type(Ctx-ExtEq) (x does not occur in Γ, and y does not in ∆)
` Γ, xp : Ap = ∆, yq : Bq ctx

Figure 1: The axioms and the rules for contexts in LMLTT

the same as the axioms and the rules on contexts in MLTT; the only difference is the attachment
of elements of R. The axiom Ctx-Emp and the rule Ctx-Ext together define that contexts are the
finite sequences of variable-type pairs as sketched above. The rule Ctx-ExtEq is a congruence rule
since it states that the judgmental equality on contexts is preserved under the context extension
by Ctx-Ext. Note that we have ` ( ) = ( ) ctx by Ctx-Emp and the rule Ctx-EqRefl in §2.3.
Convention. As Hofmann [Hof97] does, we omit the congruence rules for other constructions.

2.3 Structural rules
Next, we collect some standard rules applicable to all types, called structural rules, in Figure 2.
The rule Var formulates the reasonable postulate that one may copy an element xp : Ap in the
context and paste it to the right-hand side. The remaining part of the context is decorated with 0
as the term only consumes the one xp : Ap. In contrast, the corresponding rule in MLTT permits
the discard of resources. The other structural rules in LMLTT are the same as the corresponding
ones in MLTT except the attachment of elements of R: The next nine rules stipulate that each
judgmental equality is an equivalence relation, and the last two rules formalise the assumption
that judgements are to be preserved under the exchange of equal contexts and/or types.

2.4 Context morphisms
One of the main differences between MLTT and LMLTT lies in context morphisms [Hof97, §2.4]:
Those in MLTT are cartesian, while those in LMLTT are monoidal and non-cartesian by taking
into account the quantitative information in resource-aware computation.

Let Γ = xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n and ∆ = yq11 : Bq11 , . . . , yqm
m : Bqm

m be contexts. To represent
the quantitative information, a context morphism φ : ∆→ Γ in LMLTT is of the form

yq11 : Bq11 , . . . , yqm
m : Bqm

m ` as11 : Ap1
1 , . . . , asn

n : Apn
n

9



` Γ, xp : Ap,Φ ctx(Var)
Γ0, xp : Ap,Φ0 ` xp : Ap

` Γ ctx(Ctx-EqRefl)
` Γ = Γ ctx

` Γ = ∆ ctx(Ctx-EqSym)
` ∆ = Γ ctx

` Γ = ∆ ctx ` ∆ = Ω ctx(Ctx-EqTrans)
` Γ = Ω ctx

Γ0 ` Ap type(Ty-EqRefl)
Γ0 ` Ap = Ap type

Γ0 ` Ap = Bq type(Ty-EqSym)
Γ0 ` Bq = Ap type

Γ0 ` Ap = Bq type Γ0 ` Bq = Cr type(Ty-EqTrans)
Γ0 ` Ap = Cr type

Γ ` as : Ap

(Tm-EqRefl)
Γ ` as = as : Ap

Γ ` as1
1 = as2

2 : Ap

(Tm-EqSym)
Γ ` as2

2 = as1
1 : Ap

Γ ` as1
1 = as2

2 : Ap Γ ` as2
2 = as3

3 : Ap

(Tm-EqTrans)
Γ ` as1

1 = as3
3 : Ap

` Γ = ∆ ctx Γ0 ` Ap type(Ty-Conv)
∆0 ` Ap type

Γ ` as : Ap ` Γ = ∆ ctx Γ0 ` Ap = Bq type(Tm-Conv)
∆ ` as : Bq

Figure 2: The structural rules in LMLTT

such that

y0
1 : B0

1, . . . , y0
m : B0

m, x0
1 : A0

1, . . . , x0
i−1 : A0

i−1 ` Api

i type

yq1,i

1 : Bq1,i

1 , . . . , yqm,i
m : Bqm,i

m ` asi
i : Ai{a1/x1, . . . , ai−1/xi−1}pi

qj,i, qj , pi ∈ R 1 6 i 6 n 1 6 j 6 m

n∑
i=1

qj,i = qj .

We identify context morphisms up to the componentwise equality between the component terms;
this convention corresponds to a congruence rule, so we do not present it formally.

Further, given r ∈ R, we define another context morphism φr : ∆r → Γr by

φr := yq1r1 : Bq1r1 , . . . , yqmr
m : Bqmr

m ` as1r1 : Ap1r
1 , . . . , asnr

n : Apnr
n ,

which is well-defined as we shall show later.

Example 2.3. Each context Γ = xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n has the identity context morphism

(xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ` xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ) : Γ→ Γ,

and together with a term Γ ` bt : Bq it induces the context morphism

(x2p1
1 : A2p1

1 , . . . , x2pn
n : A2pn

n ` xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n , bt : Bq) : Γ2 → Γ, yq : Bq,

where 2 := 1 + 1.
Given another context ∆ = yq11 : Bq11 , . . . , yqm

m : Bqm
m , there is the twisting context morphism

(Γ,∆ ` yq11 : Bq11 , . . . , yqm
m : Bqm

m , xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ) : Γ,∆→ ∆, Γ.

10



Notation. If φ : ∆→ Γ is a context morphism yq11 : Bq11 , . . . , yqm
m : Bqm

m ` as11 : Ap1
1 , . . . , asn

n : Apn
n ,

and Γ,Ω ` J is a judgement, then the expression

∆,Ω{φ} ` J {φ} (4)

denotes the judgement obtained from Γ,Ω ` J by (simultaneously) substituting [Hof97, §2.4] ai
for xi in Ω and in J for i = 1, . . . , n, which is well-defined as we shall prove shortly.

Another, much more superficial difference between MLTT and LMLTT is that, whilst context
morphisms are an auxiliary, derived concept in MLTT, those in LMLTT are formal objects with
formal rules (similarly to contexts, types and terms) for making the quantitative reasoning of
LMLTT explicit. Specifically, LMLTT has the rules displayed in Figure 3 for context morphisms.
The axiom CtxMor-Emp yields the empty context morphism. This axiom requires the domain

` Γ ctx(Mor-Emp)
Γ0 ` ( ) : ( )

∆d ` φ : Γ Γ0 ` Bq type ∆e ` bt : B{φ0}q

(Mor-Ext)
∆d+e ` φ : Γ, bt : Bq

Figure 3: The rules for context morphisms in LMLTT

of the morphism to be of the form Γ0 because the morphism should not consume any resources.
In contrast, MLTT allows any context to be the domain of the empty context morphism, which
admits the discard of resources. The rule Mor-Ext extends a context morphism by a term in a
resource sensitive fashion. By the corresponding rule, MLTT permits the copying of resources.

Our context morphisms play a key role for the categorical structure of LMLTT and constitute
one of the main differences between LMLTT and the type theory due to McBride or Atkey.

2.5 Type constructions
In the following subsections, we present the axioms and the rules for specific type constructions
in LMLTT. As in the case of MLTT, each type construction in LMLTT is defined in terms of
formation, introduction, elimination and computation rules. The formation rule defines
how to construct the type, and the introduction rule stipulates how to generate terms1 of the
type. The elimination and the computation rules describe how to consume the terms and the
result of the consumption (in the form of an equation), respectively, both of which are justified by
the introduction rule. One may further postulate an optional uniqueness rule, which imposes
some canonical form on terms of the type.
Convention. Following a standard convention, henceforth we often omit evident judgements (in
the sense that they are easily detected from other hypotheses) in the hypotheses of a rule. For
instance, instead of presenting both Γ0 ` Ap type and Γ ` as : Ap, we do only the latter.
Notation. We write > and 1 for the units of tensor ⊗ and with &, respectively, i.e., we swap the
traditional notations [Gir87] (similarly to [Tro91, §2.7]), because we find it more systematic.

2.5.1 Top-type

Let us first present the rules on the top-type > in Figure 4, As the name indicates, the top-type is
a simple type essentially the same as the multiplicative unit in linear logic [Gir87]. Alternatively,
it is a linear refinement of the unit-type in MLTT [Uni13, A.2.8], and therefore intuitively it is a
trivially true formula with no information or computation involved.

1Strictly speaking, the introduction rule defines canonical terms of the type, which in turn defines terms of
the type; see [ML84b, NPS90] for the details.

11



` Γ ctx(>-Form) (p ∈ R)
Γ0 ` >p type

` Γ ctx(>-Intro) (p ∈ R)
Γ0 ` ?p : >p

Γg ` es : >p Γh ` at : Aq

(>-Elim) (r ∈ R)
Γ(g+h)r ` at[?p ← es]r : Aqr

Γ0 ` ?p : >p Γh ` at : Aq

(>-Comp) (r ∈ R)
Γhr ` at[?p ← ?p]r = atr : Aqr

Γg ` es : >p Γh, xp : >p ` at : Aq

(>-Uniq)
Γ(g+h)r ` a{?/x}t[?p ← es] = a{e/x}t : >p

Figure 4: The axioms and the rules for the top-type in LMLTT

The formation rule >-Form constructs the top-type over any context with the zero quantity
0. Note that the top-type is simple since it does not contain any variables. The introduction rule
>-Intro generates the unique term ? of the top-type, where the context has the zero quantity
because ? consumes no resources. The remaining rules are almost the same as the corresponding
ones on the unit-type in MLTT except that they take care of the quantitative information.

2.5.2 One-type

Let us next introduce the rules on the one-type 1 in Figure 5. Similarly to the top-type, the
one-type is intended to be a trivially true formula. The difference between the two types is that
the one-type is essentially the same as the additive unit in linear logic, so the introduction rule
1-Intro permits an arbitrary context Γ.

` Γ ctx(1-Form) (p ∈ R)
Γ0 ` 1p type

` Γ ctx(1-Intro) (p ∈ R)
Γ ` •p : 1p

Γ ` os : 1p

(1-Uniq)
Γ ` os = •p : 1p

Figure 5: The rules for the one-type in LMLTT

2.5.3 Bottom-type

We next present the rules on the bottom-type ⊥ in Figure 6. The intuition is that the bottom-
type is a false formula with no information or computation involved. The formation rule ⊥-Form
is just like that of the top- or the one-type, and the elimination rule ⊥-Elim corresponds to ex
falso, i.e., anything follows from a contradiction.

` Γ ctx(⊥-Form) (p ∈ R)
Γ0 ` ⊥p type

Γ ` bs : ⊥p ∆0, x0 : ⊥0 ` Aq type
(⊥-Elim) (r ∈ R)

∆0, Γ0,` R⊥
A (bs)r : A{b/x}qr

Figure 6: The rules for the bottom-type in LMLTT
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2.5.4 Theta-types

Now, let us introduce a generalisation Θ of tensor [Gir87] to dependent types, called dependent
tensor or theta-types. LMLTT has the rules on theta-types displayed in Figure 7.

Γ0, x0 : A0 ` Bq type
(Θ-Form) (p, r ∈ R)

Γ0 ` (Θxp:Ap Bq)r type

Γ0, x0 : A0 ` Bq type Γg ` as : Ap Γh ` bt : B{a/x}q

(Θ-Intro) (r ∈ R)
Γ(g+h)r ` (as, bt)r : (Θxp:Ap Bq)r

Γ0, z0 : (Θxp:Ap Bq)0 ` C type Γg, xpr : Apr, yqr : Bqr ` cu : C{(xp, yq)/z}l Γh ` tv : (Θxp:Ap Bq)r

(Θ-Elim) (k ∈ R)
Γ(g+h)k ` cu[(xp, yq)r ← tv]k : C{t/z}lk

Γ0, z0 : (Θxp:Ap Bq)0 ` C type Γg, xpr : Apr, yqr : Bqr ` cu : C{(xp, yq)/z}l Γh ` (as, bt)r : (Θxp:Ap Bq)r

(Θ-Comp) (k ∈ R)
Γ(g+h)k ` cu[(xp, yq)r ← (as, bt)r]k = c{a/x}{b/y}uk : C{(as, bt)/z}lk

Γ0, z0 : (Θxp:Ap Bq)0 ` C type Γg, zr : (Θxp:Ap Bq)r ` cu : Cl Γh ` tv : (Θxp:Ap Bq)r

(Θ-Uniq) (k ∈ R)
Γ(g+h)k ` c{(xp, yq)/z}u[(xp, yq)r ← tv ]k = c{t/z}uk : C{(as, bt)/z}lk

Figure 7: The rules for theta-type in LMLTT

The intuition is that theta-types represent a dependent conjunction similarly to sigma-types
in MLTT. However, being a generalisation of tensor, theta-types are multiplicative, while sigma-
types are additive. This intuition explains the rules of theta-types.
Notation. We write Ap⊗Bq for a theta-type Θxp:Ap Bq if B does not contain the variable x. This
convention makes sense because in this case the rules on the theta-type coincides with those on
a tensor-type; we leave the details to the reader.

2.5.5 Sigma-types

LMLTT inherits the dependent sum or sigma-types Σ form MLTT, which is a dependent type
generalisation of additive conjunction in linear logic. The rules for sigma-types are displayed in
Figure 8. Because contexts in LMLTT are multiplicative and resource sensitive, the elimination
rule Σ-Elim and the computation rule Σ-Comp are different from those in MLTT.

2.5.6 Lambda-types

We next introduce dependent linear implication or lambda-types Λ, whose rules are dis-
played in Figure 9. They are a linear refinement of dependent products or pi-types Π in MLTT.

2.5.7 Exponential-types

As the last type construction in LMLTT, we introduce exponential-types !. They are essentially
the same as exponential or of-course ! in linear logic, i.e., a countable iteration of tensor ⊗. We
display the rules on exponential-types in Figure 10.

2.6 Commuting conversions
It is a classic problem in type theory and proof theory that natural deduction systems or λ-calculi
do not achieve a unique representation of terms or proofs [GTL89, §10]. From the categorical
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Γ0, x0 : A0 ` Bq type
(Σ-Form) (p, r ∈ R)

Γ0 ` (Σxp:Ap Bq)r type

Γ0, x0 : A0 ` Bq type Γ ` as : Ap Γ ` bt : B{a/x}q

(Σ-Intro) (r ∈ R)
Γr ` 〈as, bt〉r : (Σxp:Ap Bq)r

Γ ` cu : (Σxp:Ap Bq)r

(Σ-Elim) (k ∈ R)
Γk ` π1(cu)k : Aprk

Γ ` cu : (Σxp:Ap Bq)r

(Σ-Elim) (k ∈ R)
Γk ` π2(cu)k : B{π1(cu)/x}qrk

Γ0, x0 : A0 ` Bq type Γ ` as : Ap Γ ` bt : B{a/x}q

(Σ-Comp) (r ∈ R)
Γr ` π1(〈as, bt〉)r = asr : Apr

Γ0, x0 : A0 ` Bq type Γ ` as : Ap Γ ` bt : B{a/x}q

(Σ-Comp) (r ∈ R)
Γr ` π2(〈as, bt〉)r = btr : B{a/x}qr

Γ ` cu : (Σxp:Ap Bq)r

(Σ-Uniq) (k ∈ R)
Γk ` 〈π1(cu), π2(cu)〉k = cuk : (Σxp:Ap Bq)rk

Figure 8: The rules for sigma-type in LMLTT

angle, commuting conversions are necessary for syntax to form a term model. For this prob-
lem, a standard approach is to introduce commuting conversions that identifies terms or proofs
module inessential syntactic details. This problem becomes more significant for linear logic, and
commuting conversions for a term calculus for intuitionistic linear logic due to Bierman [Bie94,
§4.2] are more involved than those of the simply-typed λ-calculus (for intuitionistic logic). Since
LMLTT can be seen as a dependent-type generalisation of Bierman’s term calculus, it is natural
that LMLTT needs commuting conversions to give rise to our categorical structure.

Figure 11 then collects commuting conversions in LMLTT.

2.7 Meta-theoretic properties
This section collects basic properties of LMLTT. We utilise some of them in later sections.

Proposition 2.4 (simultaneous substitution). For a context morphism φ : Γ→ ∆ and a judge-
ment ∆,Ω ` J derivable in LMLTT, the judgement Γ,Ω{φ} ` J {φ} is derivable in LMLTT.

Proof. By induction on the length of ∆ (as in the case of MLTT [Hof97, Proposition 2.12]).

Corollary 2.5 (weakening and substitution). The following rules are admissible in LMLTT:

Γ,∆ ` J Γ0 ` Ap type(Weak) (x 6∈ Γ,∆)
Γ, x0 : A0,∆ ` J

Γ, xp : Ap,∆ ` J Ω ` ap : Ap

(Subst) (x 6∈ Γ,Ω)
Γ,Ω,∆{a/x} ` J {a/x}

where J is the right-hand side of an arbitrary judgement, and J {a/x} (respectively, ∆{a/x})
denotes the (capture-free) substitution of a for x in J (respectively, in ∆) as in [Hof97, §2].

Proof. By Proposition 2.4.
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Γ0, x0 : A0 ` Bq type
(Λ-Form) (p, r ∈ R)

Γ0 ` (Λxp:Ap Bq)r type
Γ, xp : Ap ` bt : Bq

(Λ-Intro) (r ∈ R)
Γr ` (λxp. bt)r : (Λxp:Ap Bq)r

Γg ` ft : (Λxp:Ap Bq)r Γh ` as : Ap

(Λ-Elim) (k ∈ R)
Γ(g+rh)k ` App(ft, ars)k : B{a/x}qrk

Γg, xp : Ap ` bt : Bq Γh ` as : Ap

(Λ-Comp) (r, k ∈ R)
Γ(rg+rh)k ` App((λxp. bt)r, ars)k = b{a/x}trk : B{a/x}qrk

Γ ` ft : (Λxp:Ap Bq)r

(Λ-Uniq) (k ∈ R)
Γk ` (λxpr.App(ft, xpr))k = ftk : (Λxp:Ap Bq)rk

Figure 9: The rules for lambda-type in LMLTT

Γ0 ` Ap type(!-Form) (r ∈ R)
Γ0 ` (!Ap)r type

Γ ` as : Ap

(!-Intro) (r ∈ R; all variables in a are of exponential types)
Γr ` (!as)r : (!Ap)r

Γ ` es : (!Ap)r ∆, xp : Ap ` bt : Bq

(!-Elim) (k ∈ R)
∆rk, Γk ` brt[(!xp)r ← es]k : B{e/x}rqk

Γ ` (!as)r : !Apr ∆, xp : Ap ` bt : Bq

(!-Comp) (k ∈ R)
∆rk, Γk ` brt[(!xp)r ← (!as)r]k = b{a/x}rtk : B{a/x}rqk

Figure 10: The rules for exponential-type in LMLTT

Proposition 2.6 (multiplication). Let r be an arbitrary element of the semiring R.

1. If ` Γ ctx is derivable in LMLTT, then so is ` Γr ctx;

2. If Γ0 ` Ap type is derivable in LMLTT, then so is Γ0 ` Apr type;

3. If Γ ` as : Ap is derivable in LMLTT, then so is Γr ` asr : Bpr.

Proof. By induction on derivations in LMLTT.

Lemma 2.7 (canonical grading). If Γ ` as : Ap is a term, then there is another one Γ̃ ` ãq : Ãq
such that Γ̃ = Γ, Ãq = Ap and Γ̃ ` as = ãq : Ãq. Therefore, if φ = (xp1

1 : Ap1
1 , . . . , xpn

n : Apn
n `

bt11 : Bq11 , . . . , btmm : Bqm
m ) is a context morphism Γ → ∆, then there is another context morphism

φ̃ = (xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ` b̃r11 : B̃r11 , . . . , b̃rm
m : B̃rm

m ) such that φ = φ̃ : Γ→ ∆.

Proof. By induction on derivations of terms in LMLTT.

Lastly, we define the composition of context morphisms as in [Hof97, S 2.4]:

Definition 2.8 (composition of context morphisms). The composition of context morphisms
φ : Γ→ ∆ and ψ : ∆→ Ξ is the context morphism ψ ◦ φ : Γ→ Ξ defined by

ψ ◦ φ := Γ ` c1{φ}u1 : C1{φ}r1 , . . . , cn{φ}un : Cn{φ}rn ,
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c[(xp, yq)r ← t[(x̃p̃, ỹq̃)r̃ ← t̃]] = c[(xp, yq)r ← t][(x̃p̃, ỹq̃)r̃ ← t̃]

(as[?← ev], bt)u = (as, bt)[?← ev]u (as, bt[?← ev])u = (as, bt)[?← ev]u

Figure 11: Commuting conversions in LMLTT

where ψ = ∆ ` cu1
1 : Cr11 , . . . , cun

n : Crn
n .

Proposition 2.9 (basic properties of composition of context morphisms). Given context mor-
phisms φ, φ′ : ∆→ Γ, ψ,ψ′ : Γ→ Ξ and ϕ : Ξ→ Ω and a judgement Ξ ` J , we have

1. ψ ◦ φ : ∆→ Ξ;

2. J {ψ ◦ φ} = J {ψ}{φ};

3. ψ ◦ φ = ψ′ ◦ φ′ if φ = φ′ and ψ = ψ′;

4. (ϕ ◦ ψ) ◦ φ = ϕ ◦ (ψ ◦ φ);

5. idΓ ◦ φ = φ = φ ◦ id∆.

Proof. Straightforward and left to the reader.

3 Categorical semantics of linear dependency
Having established the syntax of LMLTT, let us proceed to its categorical semantics.
Notation. Given a functor F : COp → D, we write

∫
F for the Grothendieck construction [Ray71]

for F as a contravariant functor, and
∮
F for the dual one for F as a covariant functor.

3.1 Module comprehension categories
Our semantics of LMLTT is based on a categorical generalisation of a module over a semiring:

Definition 3.1 (module categories). A module category over a semiring R consists of

• A symmetric monoidal category M = (M,⊗, I), whose objects are called modules, and
morphisms linear morphisms;

• A colax monoidal functor ( ) = (( ) , ω, δ) : R(?, ?)→ [M,M],2 called the grading, where
[M,M] is the monoidal category3 of strong symmetric monoidal endofunctors on M such
that the diagrams in Figure 12 commute for all Γ ∈M and p, q, r ∈ R.

It is said to be closed if so is the underlying symmetric monoidal category.

Notation. Let M be a module category over R, and p ∈ R. We write Mp for the subcategory
of M whose objects are of the form Γp such that Γ ∈M.

A useful intuition is that a module category over a semiring is a generalisation of the category
of vector spaces over a field as well as the category of sets:

2Here, the underlying category of the strict monoidal category R(?, ?) is discrete.
3The monoidal structure of [M, M] here comes from that of M. Note that [M, M] also has the strict monoidal

structure that consists of the composition of functors and the identity functors.
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Γ0 I

(Γ0)r Ir

ω

∼=

ωr

Γ0 I

(Γr)0 I

ω

ω

(Γp+q)r (Γp ⊗ Γq)r

Γpr+qr Γpr ⊗ Γqr

δr
p,q

∼=

δpr,qr

Γrp+rq Γrp ⊗ Γrq

(Γr)p+q (Γr)p ⊗ (Γr)q

δrp,rq

δp,q

Figure 12: Commutative diagrams for a module category

Example 3.2. The category VecK of vector spaces over a field K and linear maps gives rise to
a module category over the semiring N:

• The tensor ⊗ is the tensor product of vector spaces;

• The unit I is the trivial vector space;

• Given vector spaces Γ,∆ ∈ VecK , a linear function φ : ∆→ Γ and a natural number n ∈ N,
the vector space Γn ∈ VecK is defined by Γn := Γ⊗ Γ⊗ · · · ⊗ Γ︸ ︷︷ ︸

n

(n > 0) and Γ0 := I, and

the linear function φn : ∆n → Γn by φn := φ⊗ φ⊗ · · · ⊗ φ︸ ︷︷ ︸
n

(n > 0) and φ0 := idI ;

• The linear function ω : Γ0 = I → I for each Γ ∈ VecK is the identity linear map;

• The linear function δp,q : Γp+q → Γp ⊗ Γq for each Γ ∈ VecK and p, q ∈ N maps

v1 ⊗ v2 ⊗ · · · ⊗ vp+q 7→ (v1 ⊗ v2 ⊗ · · · ⊗ vp)⊗ (vp+1 ⊗ vp+2 ⊗ · · · ⊗ vp+q)

for all vi ∈ Γ (i = 1, 2, . . . , p+ q).

Example 3.3. The category Set of sets and functions forms a module category over N:

• The tensor × is the cartesian product of sets;

• The unit T is an arbitrarily fixed singleton set {?};

• Given sets X,Y ∈ Set, a function f : Y → X and a natural number n ∈ N, the set Xn ∈ Set
is given by Xn := X ×X × · · · ×X︸ ︷︷ ︸

n

(n > 0) and X0 := T , and the function fn : Y n → Xn

by fn := f × f × · · · × f︸ ︷︷ ︸
n

(n > 0) and f0 := idT ;

• The function ω : X0 = T → T for each X ∈ Set is the identity map;

• The function δp,q : Xp+q → Xp ×Xq for each X ∈ Set maps

(x1, x2, . . . , xp+q) 7→ ((x1, x2, . . . , xp), (xp+1, xp+2, . . . , xp+q))

for all xi ∈ X (i = 1, 2, . . . , p+ q).
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Next, the following two examples describe links between module categories and LMLTT, and
they also explain why the grading of a module category is colax:

Example 3.4. LMLTT gives rise to a module category T over the ordered commutative semiring
N as follows. First, the underlying category T consists of

• Contexts modulo judgemental equality as objects, where we write [Γ] for the equivalence
class of each context Γ;

• Context morphisms between contexts ∆ and Γ modulo judgemental equality as morphisms
[∆]→ [Γ], where we write [φ] for the equivalence class of each context morphism φ;

• The composition [∆] [φ]→ [Γ] [ψ]→ [Ξ] of morphisms given by [ψ] ◦ [φ] := [ψ ◦ φ];

• The identity id[Γ] on each object [Γ] = [xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ] is the equivalence class of
the context morphism

xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ` xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n .

By Proposition 2.9, these structures constitute a category T . Abusing notation, we omit the
bracket [ ] on objects and morphisms. Similarly, by abuse of language, we call an equivalence class
of a context (respectively, a context morphism) a context (respectively, a context morphism).

Next, we equip the category T with the structure of a module category over N:

• The category T is strict symmetric monoidal, in which the tensor of contexts Γ = xp1
1 :

Ap1
1 , . . . , xpn

n : Apn
n and ∆ = yq11 : Bq11 , . . . , yqm

m : Bqm
m is their concatenation Γ,∆ = xp1

1 :
Ap1

1 , . . . , xpn
n : Apn

n , yq11 : Bq11 , . . . , yqm
m : Bqm

m , the unit is the empty context ( ), and the
symmetry Γ,∆ ∼→ ∆, Γ is the twisting context morphism

xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n , yq11 : Bq11 , . . . , yqm
m : Bqm

m ` yq11 : Bq11 , . . . , yqm
m : Bqm

m , xp1
1 : Ap1

1 , . . . , xpn
n : Apn

n ;

• The grading ( ) : N(?, ?)→ [T , T ] consists of the maps

r 7→ (Γ 7→ Γr) idr 7→ (∆ φ→ Γ 7→ ∆r φ
r

→ Γr),

where r ∈ N, and the (colax) context morphisms

ω := (Γ0 ` ( ) : ( )) : Γ0 → ( )
δ := (xp+q1 : Ap+q1 , . . . , xp+qn : Ap+qn ` xp1 : Ap1 , . . . , xpn : Apn, x

q
1 : Aq1, . . . , xqn : Apn) : Γp+q → Γp, Γq

given by the rules Mor-Emp and Mor-Ext, respectively. The dual, lax ones, ( ) → Γ0

and Γp, Γq → Γp+q, in general do not exist. It is easy to see that the four diagrams in
Figure 12 commute, and the induced functor ( )r : T → T is strict symmetric monoidal.

Example 3.5. For each Γ ∈ T , there is the category Ty(Γ) that consists of

• Types Γ0 ` Ap ctx modulo judgemental equality as objects, where we abbreviate the types
as Ap, and write [Ap] for their equivalence classes;

• Terms Γu, xp : Ap ` bt : Bq for some u ∈ R modulo judgemental equality as morphisms
[Ap]→ [Bq], where we abbreviate them as bt, and write [bt] for their equivalence classes;
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• The composition [Ap] [bt]−→ [Bq] [cs]−→ [Cr] of morphisms [Γu, xp : Ap ` bt : Bq] and [Γv, yq :
Bq ` cs : Cr] defined by

[cs] ◦ [bt] := [Γu+v, xp : Ap ` c{b/y}s : C{b/y}r];

• The identity id[Ap] on each object [Ap] defined by

id[Ap] := [Γ0, xp : Ap ` xp : Ap].

As in the case of the category T , these structures constitute a well-defined category Ty(Γ).
Again, we omit the bracket [ ] and confuse equivalence classes with their representatives.
Remark. One might be tempted to define morphisms [Ap] → [Bq] in Ty(Γ) instead to be terms
Γ0, xp : Ap ` bt : Bq modulo judgemental equality. These more restricted morphisms, however,
do not capture the quantitative information in the contexts Γ, and in particular this limitation
prevents us from capturing lambda-types properly by category theory. On the other hand, one
cannot take terms Γ, xp : Ap ` bt : Bq modulo judgemental equality as morphisms [Ap]→ [Bq] in
Ty(Γ) because they are not closed under composition.

This category is symmetric monoidal, where the tensor ⊗ : Ty(Γ)× Ty(Γ)→ Ty(Γ) maps(
Ap,Bq

)
7→ Ap ⊗ Bq(

(Γ0, xp : Ap ` cs : Cl), (Γ0, yq : Bq ` dt : Dr)
)
7→ Γ0, z : Ap ⊗ Bq ` (cs, dt)[(xp, yq)← z] : Cl ⊗ Dr,

and the unit is (the equivalence class of) the top-type. The tensor preserves composition by a
commuting conversion and the computation rule Θ-Comp, and identities by the uniqueness rule
Θ-Uniq. We leave it as an exercise to construct the coherence natural isomorphisms for the
associativity, the unit law and the symmetry, for which commuting conversions are crucial.

Moreover, this symmetric monoidal category extends to a module category over the semiring
N, where the grading functor ( ) : N(?, ?)→ [Ty(Γ),Ty(Γ)] is given by the maps

(r,Ap) 7→ Apr

(idr, Γ0, xp : Ap ` bq : Bq) 7→ Γ0, xpr : Apr ` bqr : Bqr

together with the evident (colax) morphisms

(Ar)0 = A0 → > (Ar)p+q = Apr+qr → Apr ⊗ Aqr = (Ar)p ⊗ (Ar)q.

given by weakening and the respective rules Θ-Intro and >-Intro. These morphisms make the
diagrams in Figure 12 commute; we focus on the third one since the other three are trivial: The
composition of Γ0, zr : (Ap⊗Aq)r ` (xpr, yqr)[(xpr, yqr)← zr] : Apr⊗Aqr and Γ0, x(p+q)r : A(p+q)r `
(xp, xq)r : (Ap⊗Aq)r is Γ0, x(p+q)r : A(p+q)r ` (xpr, yqr)[(xpr, yqr)← (xpr, yqr)r] : Apr⊗Aqr, which
is equal to Γ0, x(p+q)r : A(p+q)r ` (xpr, yqr) : Apr ⊗ Aqr.

We have shown that Ty(Γ) forms a module category over N. Note that, by construction, we
have the equation

Ty(Γ) = Ty(Γ0). (5)

We next generalise module categories along the path from simple to dependent type theories
(or from propositional to predicate logic). To this end, we need a 2-category of module categories:

Definition 3.6 (module functors). A module functor over a sermiringR is a strong symmetric
monoidal functor F : M → M′ between module categories over R together with a family of
mediating isomorphisms [Γ]rF : F (Γr) ∼→ F (Γ)r for all r ∈ R natural in Γ ∈M.
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Definition 3.7 (module natural transformations). A module natural transformation over
the semiring R is a symmetric monoidal natural transformation α : F ⇒ G :M→M′ between
module functors over R such that the diagram

F (Γr) F (Γ)r

G(Γr) G(Γ)r
αΓr

[Γ]rF

αr
Γ

[Γ]rG

commutes for all Γ ∈M and r ∈ R.

Proposition 3.8 (2-category of module categories). (Small) module categories, module func-
tors and module natural transformations over the semiring R constitute a (large) 2-category
ModCatR.

Proof. First, given small module categories M = (M,⊗, I) and M′ = (M′,⊗′, I ′) over R, let
ModCatR(M,M′) be the category such that

• Objects are module functors M→M′;

• Morphisms between objects F,G :M→M′ are module natural transformations F ⇒ G;

• The composition of morphisms α : F ⇒ G and β : G ⇒ H is the vertical composition of
natural transformations

F
α⇒ G

β⇒ H :M→M′

• The identity on each object F :M→M′ is the identity natural transformation F ⇒ F .

Next, given another small module category M′′ = (M′′,⊗′′, I ′′) over R, we define the bi-
functor ModCatR(M,M′)×ModCatR(M′,M′′)→ ModCatR(M,M′′) that maps

• Each pair of objects F ∈ ModCatR(M,M′) and F ′ ∈ ModCatR(M′,M′′) to the compo-
sition F ′ ◦ F of strong symmetric monoidal functors

M F→M′ F
′

→M′′ (F ′ ◦ F )I :=
(
I ′′

F ′
I′−→ F ′I ′

F ′FI−→ F ′FI
)

(F ′ ◦ F )A,B :=
(
F ′FA⊗′′ F ′FB

F ′
F A,F B−→ F ′(FA⊗′ FB) F

′FA,B−→ F ′F (A⊗B)
)

together with the composition of mediating isomorphisms

(F ′FΓ)r
[FΓ]r

F ′−→ F ′(FΓ)r F
′[Γ]rF−→ F ′F (Γr)

for each Γ ∈M and r ∈ R;

• Each pair of morphisms α : F → G in ModCatR(M,M′) and α′ : F ′ → G′ in ModCatR(M′,M′′)
to the horizontal composition of natural transformations

α′ ∗ α : F ′ ◦ F → G′ ◦G.

Next, let the functor idM : 1 → ModCatR(M,M) map the unique object of the terminal
category 1 to the identity functor idM :M→M together with the family of trivial mediating
isomorphisms, and the unique morphism in 1 to the identity natural transformation on idM.

Finally, it is just a routine to verify that these structures constitute a well-defined 2-category
as in the case of the 2-category of symmetric monoidal categories.
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We are now ready to generalise module categories and define our basic categorical structure
to interpret LMLTT:

Definition 3.9 (module comprehension categories). A module pre-comprehension category
over the semiring R is a triple B = (B,D , . ) of

• A module category B = (B,⊗, I, ( ) ) over R, called the base;

• A functor D : Bop → ModCatR, called the dependency, such that the diagram

Bop Bop
0

ModCatR Set ModCatR

D

( )0

D

Ob Ob

in the category Cat commutes, where the functor Ob : ModCatR → Set maps each module
category A ∈ ModCatR to the set Ob(A) of all its objects, and each module functor
F : A→ B to its object-map Ob(f) : Ob(A)→ Ob(B);
Notation. We define a functor D+

Γ : D(Γ)Op → ModCatR for each Γ ∈ B by D+
Γ := D◦(Γ. ).

• A functor . :
∫
B D0 → B, called the module pre-comprehension, where

∫
B D0 denotes

the Grothendieck construction for D0 := D ◦ ( )0 : BOp → ModCatR,

that satisfies the following axioms:

• (Left unit law) The functor A ∈ D(I) 7→ I.A ∈ B defines an equivalence D(I) ' B
in ModCatR, for which the mapping Γ 7→ Γ denotes the inverse, and an isomorphism
∆⊗ Γ ∼= ∆.Γ{ω} natural in Γ,∆ ∈ B;

• (Right unit law) The unit >Γ of the module category D(Γ) = (D(Γ),⊗Γ,>Γ, ( )Γ) for
each Γ ∈ B admits an isomorphism Γ.>Γ ∼= Γ;

• (Associativity) There is a natural transformation Θ :
∫

D+ ⇒ D : BOp → Cat that ad-
mits an isomorphism Γ.ΘΓ(A,B) ∼= Γ.A.B natural in Γ ∈ B, A ∈ D(Γ) and B ∈ D(Γ.A),
where the functor

∫
D+ : BOp → Cat maps each object Γ ∈ B to the Grothendieck con-

struction
∫

D+
Γ , and each morphism φ : ∆→ Γ in B to the functor

∫
D+
φ := ( {φ}, {φ+}) :∫

D+
Γ →

∫
D+

∆ with φ+ := φ.id : ∆.A{φ} → Γ.A.

The module pre-comprehension is called a module comprehension if there are bijections

D(I)(ΘI(Γ, A{∼=}), A′{∼=}) ∼= D(Γ)(A,A′) ∼= D(Γ.A)(>, A′{πA1 ◦ ∼=}) (6)

natural in Γ ∈ B and A,A′ ∈ D(Γ), where the morphism πA1 : Γ.A0 → Γ in B is the composition

Γ.A0 id.ω→ Γ.>Γ
∼→ Γ.

A module comprehension category over R is a module pre-comprehension category over R
whose module pre-comprehension is a module comprehension.

Remark. ModCatR is not a module category, and the dependency or the module comprehension
of a module comprehension category is in general not a module functor. These structures seem
impossible to obtain. For instance, there appears no evident choice for the grading on ModCatR.
Also, an obvious choice for the tensor on the result of applying a module pre-comprehension is
the componentwise one, but clearly it does not work.
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The intuition behind this definition is best provided by the following canonical example:

Example 3.10. If we postulate top- and theta-types, then the module category T over ω extends
to a module comprehension category, which satisfies the left unit law on the nose, as follows:

• The dependency Ty : T Op → ModCatω maps each context Γ to the module category Ty(Γ)
defined in Example 3.5, and each context morphism φ : ∆ → Γ to the module functor
Ty(φ) : Ty(Γ) → Ty(∆) that maps each type Γ0 ` Ap type to the type ∆0 ` A{φ}p type,
and each term Γ0, xp : Ap ` bt : Bq to the term ∆0, xp : A{φ}p ` b{φu}t : B{φ}q. This
forms a well-defined functor thanks to Proposition 2.4. Moreover, the dependency clearly
satisfies the required commutativity.

• The module comprehension maps each pair (Γ,Ap) of a context Γ and a type Γ0 ` Ap type
to the context Γ, xp : Ap, and a pair (φ, ap) of a context morphism φ : ∆ → Γ and a term
∆0, yq : Bq ` as : A{φ}p to the context morphism φ.as : ∆, yq : Bq → Γ, xp : Ap.

• The left unit law is given by the empty context ( ), for which each context Γ = xp1
1 :

Ap1
1 , . . . , xpn

n : Apn
n is mapped to the (simple) type ` Γ type defined inductively by

ε := > Γ, xpn+1
n : Apn+1

n+1 := Θx:ΓApn+1
n+1 {ιΓ},

where x : Γ = ( ).Γ ιΓ→ Γ is the required isomorphism defined inductively along with Γ.

• The right unit law is satisfied by the top-type.

• The family of all theta-types forms theta.

3.2 Semantic type constructions
We have seen that the right unit law and the associativity of a module comprehension category
correspond in LMLTT to the top-type and theta-types, respectively. In this section, we define
categorical semantics of the remaining type constructions.
Convention. We henceforth skip writing evident isomorphisms such as those ∼= in (6).

Definition 3.11 (closure). A module comprehension category B = (B,D , . ) is said to be
closed if it has a natural transformation Λ :

∫
D+ ⇒ D : BOp → ModCatR, called lambda,

and a bijection D(Γ.A)(A′{π1}, B) ∼= D(Γ)(A′,Λ(A,B)) natural in Γ ∈ B, A,A′ ∈ D(Γ) and
B ∈ D(Γ.A).

Example 3.12. Lambda-types form lambda for the module comprehension category T .

Definition 3.13 (sigma). Sigma for a module comprehension category B = (B,D , . ) refers
to a natural transformation Σ :

∫
D+ ⇒ D : BOp → ModCatR together with a pair of mor-

phisms $1 ∈ D(Γ)(ΣΓ(A,B), A) and $2 ∈ D(Γ)(ΣΓ(A,B), B{$1}), where $1 := id.$1 :
Γ0.ΣΓ(A,B) → Γ0.A, that has a unique morphism 〈a, b〉 ∈ D(Γ)(>Γ,ΣΓ(A,B)) for a given
pair of morphisms a ∈ D(Γ)(>Γ, A) and b ∈ D(Γ)(>Γ, B{a}) such that the diagram

>Γ

A ΣΓ(A,B) B{a}

a 〈a,b〉
b

$1 $2

in D(Γ) commutes.
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Example 3.14. Sigma-types form sigma for the module comprehension category T .
Remark. The standard categorical semantics of pi- and sigma-types by adjoints to the indexing
functor of the projection morphisms [Jac93] does not work for lambda- and sigma-types because
the projection context morphisms Γ.Ap → Γ in general do not exist in LMLTT.
Definition 3.15 (one). One for a module comprehension category B = (B,D , . ) is a natural
transformation 1 : κT ⇒ D : BOp → ModCatR, where κT is the constant functor valued at the
terminal category T , such that the hom-set D(Γ)(>, 1Γ) is singleton for each Γ ∈ B.
Example 3.16. One-types form one for the module comprehension category T .
Definition 3.17 (bottom). Bottom for a module comprehension B = (B,D , . ) is a natural
transformation ⊥ : κT ⇒ D : BOp → ModCatR such that D(Γ)(⊥Γ, A) 6= ∅ for all Γ ∈ B and
A ∈ D(Γ.⊥Γ).
Example 3.18. Bottom-types form bottom for the module comprehension category T .
Definition 3.19 (exponential). Exponential for a module comprehension B = (B,D , . ) over
R is a limit ! : B → B of the grading ( ) : R(?, ?)→ [B,B].
Example 3.20. The function that maps types by Ap 7→ !Ap and terms by Γ ` as : Ap 7→ !Γ `
!as : !Ap forms exponential for the module comprehension category T .
Theorem 3.21 (completeness of module comprehension categories). LMLTT forms a module
comprehension category T over the semiring ω, and top-types, theta-types, pi-types, sigma-types,
one-types and exponential-types form top, theta, pi, sigma, one and exponential, respectively.
Theorem 3.22 (dependent linear/non-linear adjunction). Under construction.

4 Categorical semantics of linear Martin-Löf type theory
In this last section, we establish categorical semantics of LMLTT in an arbitrary module com-
prehension category (§4.1) and prove its soundness (§4.2).

4.1 Interpretation
Throughout this section, fix an ordered semiring R underlying LMLTT and a module compre-
hension category B = (B,D , . ) over R. Our aim is to define a semantic map J KB that interprets
LMLTT in B. Roughly, the semantic map J KB interprets judgements in LMLTT by

` Γ ctx 7→ JΓKB ∈ B
Γ0 ` Ap type 7→ JAKpB ∈ D(JΓKB)

Γ ` as : Ap 7→ JaKsB ∈ D(JΓKB)(>, JAKpB)
` Γ = ∆ ctx ⇒ JΓKB = J∆KB ∈ B

Γ0 ` Ap = Bq type⇒ JAKpB = JBKqB ∈ D(JΓKB)
Γ ` as11 = as22 : Ap ⇒ Ja1Ks1B = Ja2Ks2B ∈ D(JΓKB)(>, JAKpB).

As in the case of the categorical semantics of MLTT [Hof97, §3.5], a priori we cannot define
the semantic map J KB for judgements in LMLTT by induction on derivations as a derivation of a
judgement may not be unique in the presence of the rules Ty-Con and Tm-Con. Nevertheless,
in this section we first define the semantic map J KB by induction on derivations, which is not
necessarily well-defined, and later in Section 4.2 show that it is well-defined. The latter section
also proves the soundness of the interpretation.
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Definition 4.1 (semantics of contexts). The semantic map J KB assigns an object JΓKB ∈ B to
each context ` Γ ctx by induction on |Γ|,

J( )KB := I JΓ, xp : ApKB := JΓKB.JAKpB.

Definition 4.2 (semantics of context morphisms). The semantic map J KB assigns a morphism
JφKB : J∆KB → JΓKB to each context morphism ∆ ` φ : Γ by induction on |φ|:

J∆0 ` ( ) : ( )KB := ω : J∆K0
B → I

J∆d+e ` φ : Γ, as : ApKB :=
(
J∆Kd+e

B
δ→ J∆KdB ⊗ J∆KeB ∼= J∆KdB.J∆KeB{ω}

φ.ιJaKs
B{ω}−→ JΓKB.JAKpB

)
,

where ιJaKsB{ω} ∈ D(J∆K0
B)(J∆KeB{ω}, JAKpB{JφKB◦ω}) is obtained from JaKsB ∈ D(J∆KeB)(>, JAKpA{JφKB})

along the natural bijection ι : D(J∆KeB)(>, JAKpB{JφKB}) ∼= D(I)(J∆KeB, JAKpB{JφKB}).

Definition 4.3 (semantics of variables). The semantic map J KB interprets the rule Var by

JΓ0, xp : Ap,Φ0 ` xp : ApKB := π2{π1} ∈ D(JΓK0
B.JAKpB.JΦK0

B)(>, JAKpB{π1}).

Definition 4.4 (semantics of theta-types). The semantic map J K interprets theta-types by

• (Θ-Form) JΓ0 ` (Θxp:Ap Bq)r typeKB := Θ(JΓ0 ` A typeKpB, JΓ0, x0 : A0 ` B typeKqB)r;

• (Θ-Intro) JΓ(g+h)r ` (as, bt)r : (Θxp:Ap Bq)rKB := (JΓg ` as : AKB⊗JΓh ` bt : B{a/x}KB◦δ)r;

• (Θ-Elim) JΓ(g+h)k ` cu[(xp, yq)r ← tv]k : C{t/z}lkK := π1 ◦ JΓ ` cu : (Σxp:Ap Bq)rKkB (fixed
later).

Definition 4.5 (semantics of lambda-types). The semantic map J KB interprets the rules on
lambda-types by

• (Λ-Form) JΓ0 ` (Λxp:Ap Bq)r typeKB := Λ(JΓ0 ` A typeKpB, JΓ0, x0 : A0 ` B typeKqB)r;

• (Λ-Intro) JΓr ` (λxp. bt)r : (Λxp:Ap Bq)rK := λ(JΓ, xp : Ap ` bt : BqKB)r;

• (Λ-Elim) JΓ(g+rh)k ` App(ft, ars)k : B{a/x}qrkKB := ev ◦ (JΓg ` ft : (Λxp:Ap Bq)rKB ⊗ JΓh `
as : ApKrB ◦ δ)k.

Definition 4.6 (semantics of sigma-types). The semantic map J K interprets sigma-types by

• (Σ-Form) JΓ0 ` (Σxp:Ap Bq)r typeKB := Σ(JΓ0 ` A typeKpB, JΓ0, x0 : A0 ` B typeKqB)r;

• (Σ-Intro) JΓr ` 〈as, bt〉r : (Σxp:Ap Bq)rKB := 〈JΓ ` as : AKB, JΓ ` bt : B{a/x}KqB〉r;

• (Σ-Elim) JΓk ` π1(cu)k : AprkK := π1 ◦ JΓ ` cu : (Σxp:Ap Bq)rKkB and JΓk ` π2(cu)k :
B{π1(cu)/x}qrkK := π2{JΓ ` cu : (Σxp:Ap Bq)rKkB}.

Definition 4.7 (semantics of top-types). The semantic map J KB interprets the top-type by

• (>-Form) JΓ0 ` 1p typeK := 1p

• (>-Intro) JΓ ` ?p : 1pK := ?p.

• (>-Elim) JΓ ` ?p : 1pK := ?p (fixed later).
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Definition 4.8 (semantics of one-types). The semantic map J KB interprets the one-type by

• (1-Form) JΓ0 ` 1p typeK := 1p

• (1-Intro) JΓ ` ?p : 1pK := ?p.

Definition 4.9 (semantics of bottom-types). The semantic map J KB interprets the bottom-type
by

• (⊥-Form) JΓ0 ` ⊥p typeKB := ⊥p;

• (⊥-Elim) JΓr,∆r ` R⊥A (bs)r : A{b/x}qrKB := ξ ◦ JΓ ` bs : ⊥pKB.

4.2 Soundness
Soundness is proven by the standard method as in the case of MLTT [Hof97].
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